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Abstract 

Affective features have been suggested to play a predominant role in social group representations. 

Although studies identified overlaps between affective processing regions and social groups 

representations, not much is known about the temporal dynamics of their interaction. In the present 

study, I used multivariate decoding of electroencephalography (EEG) data from an evaluative task to 

track affective representations as a function of stimulus semantic category. Pattern classifiers were 

trained at distinguishing between positive and negative valence concepts presented as words and then 

tested on the same concepts presented as pictures. In contrasting performance between social groups 

and objects, the results revealed a stronger affective decoding for social groups in both an early and 

late time windows, coinciding with delayed evaluative responses. The present findings provide initial 

evidence of the presence of categorical differences in affective temporal dynamics, and point to an 

increased complexity in social group affective/semantic representations. 

 

 Introduction 

Human lesion studies suggest that social categories such as social groups might be represented in an 

independent brain network from non-social categories (Piretti et al., 2015; Rumiati, Carnaghi, 

Improta, Diez, & Silveri, 2014). Moreover, differently from nonsocial categories, the representation 

of social groups seems to give affective features a significantly greater weight. In a TMS study, we 

recently provided evidence that stimulating the inferior frontal gyrus, commonly associated with the 
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processing of negative affective features, speeds up the categorization of negative social group names. 

That is, when participants were presented with negative social group names such as “butchers”, as 

opposed to the positive category of “musicians”, TMS speeded up categorization responses to the 

former, thus suggesting a link between affective processing and semantic processing (Suran, Rumiati, 

& Piretti, 2019). Moreover, using an affective priming paradigm, we found greater facilitation in 

evaluating social groups relative to objects following the presentation of semantically unrelated but 

affectively congruent primes. This suggests that the elaboration of affective information enhances the 

subsequent processing of social groups (Suran, Arcara, Piretti, & Rumiati, 2019). This set of findings 

is consistent with theories of semantic memory positing a central role of affective features in the 

representation of social groups (Lambon Ralph, Jefferies, Patterson, & Rogers, 2016; Mahon & 

Caramazza, 2011; Simmons & Barsalou, 2003). As for how this central role of affect may be 

implemented anatomically, previous neuroimaging studies identified activation in regions selectively 

responding only to affective information related to social groups, as well as areas responding to both 

social groups and nonsocial categories but showing an increased response to the former (Norris, Chen, 

Zhu, Small, & Cacioppo, 2004). Even within regions processing both types of concepts, it is possible 

that the greater weight of affective information for social groups may be also reflected in the temporal 

dynamics of its processing, an aspect that fMRI, given its relatively low temporal resolution may 

have been unable to capture. To overcome such limitation, in the present study we used the temporal 

resolution of electroencephalography (EEG) to study whether differences between social and non-

social are present in the temporal dynamics of processing their affective features. Additionally, to 

control for possible confounds of modality-specific mechanisms, we investigated the neural correlates 

of affective processes common to both visual and lexical inputs. 

According to one conceptualization of how semantic knowledge might be organized in the 

brain, affective features are independent from features that rely on other modalities (Lambon Ralph 

et al., 2016). A first characteristic of affective features is that they do not possess a dedicated input 
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modality. This implies that, to study affect, one needs to rely on stimuli, such as words or pictures, 

which, despite eliciting the same affective processes, are also expected to rely on distinct modality-

specific brain regions. For this reason, if one were to identify differences between two categories in 

affective features processing, it is often not possible to rule out the possibility that the difference is 

due to other properties of the stimulus, such as visual features in pictures that cannot be fully matched 

(Fairhall & Caramazza, 2013; Leonardelli, Fait, & Fairhall, 2019). By jointly using the information 

from two distinct input modalities, multivariate pattern analysis (MVPA) of neural information 

allows to overcome this limitation by individuating cognitive processes that are shared by different 

input modalities via cross-decoding (Grootswagers, Wardle, & Carlson, 2017; King & Dehaene, 

2014). To this end, for each time point from the target word onset, a classifier was trained to 

distinguish valence-dependent neural patterns, and then tested on recognizing them in pictures 

representing the same concepts (King & Dehaene, 2014). Each classifier trained on words was tested 

on all time intervals from picture presentation, lasting up to 1 second post stimulus-onset. The 

resulting time generalization analysis allowed us to study the changes in valence-specific brain 

patterns, and to directly compare them between word and picture targets in the temporal domain (King 

& Dehaene, 2014). To this end, we asked participants to complete an evaluative task in which they 

were required to explicitly focus on the affective content of the stimuli while their brain responses 

were being recorded. 

Affect-driven effects common to both words and pictures have been reported before in early 

and late time windows in studies adopting univariate analysis approaches. For example, singling-out 

negative information (associated with reactions to threat) can occur as early as in the 165-195 ms 

time window after target word onset (Zhang et al., 2014), while a later time window (~450 ms post-

stimulus) has been argued to reflect the automatic processing of the polarity of affectively charged 

words (Zhang et al., 2014), the presence of an affective content of greater arousal (Hinojosa, Carretié, 

Valcárcel, Méndez-Bértolo, & Pozo, 2009), as well as the start of a more controlled, context-
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dependent processing of affective information (Cunningham, Espinet, Deyoung, & Zelazo, 2005). In 

studies using picture stimuli, the presence of valenced as opposed to affectively neutral content is 

found in an early (150-180 ms) time window, whereas the affective polarity of such stimuli, as for 

words, is evidenced by a later component (~450 ms, Zhu et al., 2015). If such temporal and activation 

similarities reflect the involvement of shared underlying processes, we expected to record modality-

independent valence effects both in early (~150 ms) and later time windows (~450 ms). Based on the 

hypothesized interaction between the semantic category and affective processing, we expected an 

earlier and better modality-independent decoding when processing social compared to nonsocial 

categories at all valence processing stages. 

 

 Method 

2.1 Participants 

Twenty-one healthy participants (16 females, age range: 21 – 33 years) took part to the study for 

monetary compensation. The inclusion criteria consisted in speaking Italian as first language, self-

reported right-handedness, and a minimum of 95% conformity in evaluating the target word stimuli 

according to the valence manipulation based on an online survey. The study protocol was approved 

and carried out in accordance with the recommendations of the local Ethics Committee, and in 

accordance with the Declaration of Helsinki. All subjects gave written informed consent prior to 

participating. 

 

2.2 Materials 

A total of 40 nouns of social groups (N = 20) and objects (N = 20) was selected from a larger database 

rated by a different sample of 12 subjects and used as target word stimuli. Each semantic category 

was equally split in a positive and negative subset of 10 elements each, differing significantly in their 
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valence ratings (see Appendix 3). Within the positive and the negative valence stimuli, social group 

and object nouns were matched according to their average ratings of valence, arousal, familiarity, and 

length (see Table 1). 

To exclude the possibility of categorical differences in RTs being due to differences in valence 

ambivalence (Cunningham, Raye, & Johnson, 2004) - as participants might take longer at considering 

both positive and negative features - we also administered an additional online survey to 40 

participants (33 females, age range: 21-35). The survey presented participants with the target stimuli 

in a random order and asked to rate on a 9-point Likert scale the degree of both the positivity and 

negativity of each concept (0 = not at all, 9 = very much).To calculate ambivalence from the survey 

data, we computed for each concept an index of ambivalence using the equation of the Gradual 

Threshold Model (Priester & Petty, 1996) and subjected it to a 2 (Category: Social vs. Nonsocial) x 

2 (Valence: Positive vs. Negative) ANOVA. The analysis of the resulting ambivalence scores 

revealed no effect of Category [F(1, 36) =.60, p = .44, 𝜂𝑝
2 = .02], a main effect of Valence [F(1, 36) 

= 44.71, p < .001, 𝜂𝑝
2 = .55], with negative concepts being overall more ambivalent, and no significant 

interaction [F(1, 36) = 3.03, p = .09, 𝜂𝑝
2 = .08]. 

A sample of 40 pictures representing the same concepts expressed by the selected words was 

retrieved from Google Images and matched across category and valence polarity in their 

representativeness ratings, collected from a different sample of 14 participants (see Table 1). Where 

applicable, the faces of the depicted individuals were manually blurred using the GIMP 2 software 

(Kimball, Mattis, Natterer, & Neumann, 2013). Additionally, pictures were also matched in low-level 

visual features (all ps > .05). These included average luminance, amount of red, green and blue, and 

average spatial frequency, extracted through a custom Matlab script (adapted from Blechert, Meule, 

Busch, & Ohla, 2014). 
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Variables Valence Arousal Familiarity Length Ambivalence Pic. represent. 

Social 

   Positive 
6.14 ± .71 3.91 ± .62 3.46 ± 1.02 7.4 ± 1.17 1.82 ± 2.06 6.69 ± .26 

Object 

   Positive 6.42 ± .47 4.00 ± .69 3.8 ± 1.04 6.8 ± 1.48 0.45 ± 1.01 6.64 ± .16 

Social 

   Negative 
3.30 ± .81 3.88 ± .57 3.63 ± .75 7.9 ± .52 4.50 ± 2.10 6.64 ± .27 

Object 

   Negative 3.07 ± .48 3.81 ± .57 2.94 ± 1.13 7.1 ± 1.52 5.03 ± 1.44 6.70 ± .20 

ANOVA p < .001 p = .92 p = .26 p = .37 p = .09 p = .87 

 

Table 1. Descriptive statistics for selected words and pictures, divided the combination of semantic category 

and valence polarity. Means of word length and ratings of valence (1, unpleasant to 7, pleasant), arousal (1, 

not arousing to 7, very arousing), familiarity (1, unfamiliar to 7, familiar), ambivalence, and of picture 

representativeness (1, not representative to 7, very representative). On the bottom row, p-values of one-way 

ANOVAs on each factor, using as independent variable the combination of category and valence polarity. 

 

To ensure an equal speed in semantic access between categories, we collected a measure of 

accessibility by devising a simple categorisation task. In this task, an independent sample of 20 

participants (11 females, age range: 25-35) was asked to provide speeded responses to the selected 

stimuli. The task required to categorize the targets based on whether they represented people or 

objects, using the same timings of the main task (see Fig. 1). The analysis of the reaction times showed 

no main effect of category [F(1, 19) =.53, p = .48, 𝜂𝑝
2 = .03], for which participants took on average 

the same time to categorize social groups and objects, regardless of modality and valence (both ps > 

.05). 

2.3 Procedure 

Following the montage of the EEG cap, participants were seated in an acoustically isolated room and 

asked to fixate an “X” in the center of the screen for 3 minutes to record resting-state EEG activity. 
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After this period, they completed an evaluative requiring to indicate via button press whether the 

concept represented by the target stimulus was associated with a pleasant or unpleasant feeling. A PC 

running PsychoPy (Peirce, 2007) controlled the presentation of the stimuli and the recording of 

responses. Stimuli were projected on a gray background via a 19” LCD monitor with resolution of 

1280*1024 pixels and a screen refresh rate of 60 Hz. During each trial, a fixation cross was presented 

for 700 ms, followed by a 200 ms blank screen and by the presentation of the target stimulus (300 

ms). The target was then replaced by another blank screen that lasted for 1700 ms, giving participants 

a total of 2000 ms to respond from target onset (see Figure 1). The evaluation was given via button 

press by using the index finger of each hand placed over the ‘f’ and ‘j’ QUERTY keyboard buttons. 

The intertrial interval (ITI) was jittered between 800 and 1200 ms at 100 ms intervals, and presented 

a white fixation cross on a gray background. Participants were instructed to try to restrict their 

blinking to the ITI period to reduce the number of artefacts. The target stimuli consisted of images or 

words representing social groups or objects of positive or negative valence, presented in a random 

order. Participants first completed a block of 10 practice trials, followed by 12 test blocks of 40 trials 

each. Single blocks contained either pictures of words in an alternating, counterbalanced order, and 

were separated by self-paced breaks. 

The experiment consisted of a 2 (Category: social group vs. object) x 2 (Valence: positive vs. 

negative) x 2 (Modality: picture vs. word) within-subjects design, with response time (RT), accuracy, 

and EEG voltage as the dependent variables. 
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Figure 1. Temporal progression an evaluation trial with examples of social groups of negative and positive 

valence, represented as words or pictures (only one of the stimuli was presented each time). Participants were 

instructed to evaluate the target starting from its onset, and to try not to blink until the appearance of the white 

cross (ITI). 

 

2.4 Electrophysiological recordings 

A set of 64 Ag/AgCl active electrodes connected to a BioSemi Active-Two amplifier system were 

mounted on an elastic cap according to the International 10/20 system to record the continuous neural 

signal by means of ActiView acquisition software (Biosemi, Amsterdam, Netherlands). Electrode 

offsets were kept between ±20 mV, while the signal was sampled at a rate of 1024 Hz with a 24-bit 

resolution. A common mode voltage based on the ActiveTwo’s CMS/DRL feedback loop was used 

for analog-to-digital conversion of recorded voltages for each electrode (cf. to 

https://www.biosemi.com/faq/cms%26drl.htm). Anti-aliasing filters were used and data were band-

pass filtered between 0.01–100 Hz during data acquisition. 

 EEG data preprocessing was performed using the Brainstorm software (Tadel, Baillet, 

Mosher, Pantazis, & Leahy, 2011). First, the EEG recordings were downsampled offline at 125 Hz 

and band-pass filtered (0.05 – 40 Hz). Bad electrode channels were removed upon visual inspection, 

https://www.biosemi.com/faq/cms%26drl.htm
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as well as movement artefacts. Eye blinks artefacts were removed through independent components 

analysis (ICA; (Makeig, Bell, Jung, & Sejnowski, 1996). Epochs containing artefacts other than eye 

movements were removed after visual inspection. One subject (female, age 24) was excluded from 

all further analyses due to the presence of excessive movement artefacts. The data were then epoched 

from -200 to +1500 ms relative to the onset of the target and baseline-corrected from -200 ms to target 

onset. 

 

2.5 Behavioral data analysis 

Behavioral data were preprocessed and analyzed in R (R Core Team, 2016). Data from correct trials 

within 2 SD from each participant’s average were then log-transformaed to reduce the skew of the 

distribution and subjected to a 2 (Category: Social vs. Nonsocial) x 2 (Valence: Positive vs. Negative) 

x 2 (Modality: names vs. pictures) repeated-measures ANOVA. Follow-ups to significant interactions 

consisted of Bonferroni-corrected contrasts. Only results involving interactions with the Category 

factor and yielding significant post-hoc contrasts are reported. 

 

2.6 ERP data analysis 

The time windows for the main components were identified from the existing literature 

(Hinojosa et al., 2009; Zhang et al., 2014; Zhu et al., 2015) and the visual inspection of average peak 

amplitudes. In order not to lose statistical power in quantifying effects over several electrodes, eleven 

regions of interest (ROIs; see Figure 2) were then created by averaging the amplitude of the respective 

electrodes (as in Hinojosa, Carretié, Valcárcel, Méndez-Bértolo, & Pozo, 2009). The resulting ERPs 

were subjected to two 2 (Category: Social vs. Nonsocial) x 2 (Valence: positive vs. negative) x 2 

(Modality: word vs. picture) x 11 (Cluster: [OC, LP, RP, LC,  RC, LF, RF, FP, MF, MC, MP]) 

repeated measures ANOVAs, one for each component’s time window (150 - 200 ms, 400 - 700 ms 
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and 700 - 1000 ms). Where necessary, the degrees of freedom of the F ratios were adjusted using the 

Greenhouse–Geisser epsilon correction. Follow-ups to significant interactions including Valence 

consisted of Bonferroni-corrected contrasts of Valence effects. Only interactions yielding significant 

follow-up contrasts are reported. 

 

Figure 2. Clusters of electrodes grouped for statistical analysis of ERPs. OC, occipital, LP, left posterior, 

RP, right posterior, LC, left central, RC, right central, LF, left frontal, RF, right frontal, FP, frontopolar, MF, 

middle frontal, MC, middle central, MP, middle posterior. 

 

2.7 Decoding analysis 

Multivariate classification analyses were performed using the CoSMoMVPA analysis package 

(www.cosmomvpa.org) (Oosterhof, Connolly, & Haxby, 2016) implemented in MATLAB. 

Classification was performed separately for every 8 ms time bin using linear discriminant analysis 

(LDA) classifiers. These were trained to discriminate the patterns of activation across EEG sensors 

for the two valence conditions in one subset of the data, and tested on another. 
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Cross-decoding was conducted separately for Social and Object categories. Training data 

consisted of trials from the Words condition, after which classifiers were tested on trials from the 

Pictures condition. In this way, the decoding performed by the classifier on pictures derived from the 

identification of the same patterns of valence differences that had been learned on word stimuli. The 

correctly identified patterns were thus common to both modalities. To increase the reliability signal-

to-noise ratio and the of the data for the classifier, for each participant and experimental condition 

separately, five averaged trials were created. As the number of correct trials differed between 

participants and within conditions, the averages containing roughly the trials corresponding to each 

experimental block/run, with the constraint that no average was derived from more than one trial 

more than the other averages. 

Given the consistency of the response mappings within participants, to avoid the confound of 

decoding motor responses rather than valence differences (Grootswagers et al., 2017), classifiers were 

trained and tested on the combined data from pairs of participants with opposite mappings. The 

classification accuracy of each participant was calculated by averaging the performance of all the 

classifications containing that participant’s data (i.e., 10 for each subject). The percentage of correct 

predictions of the classifier was used as index of classification accuracy. The classification was 

generalized across train and test times, for which it was repeated for their every possible combination, 

leading to a classification accuracy map of 125 x 125 points (i.e., 1000 ms x 1000 ms with 125 Hz 

resolution) for every comparison in each participant. Individual maps were smoothed with an 

averaging box filter of the size of 3 x 3 time points (i.e., 24 ms in both training and testing time). 

 

2.8 Statistical testing 

To identify time-periods presenting above chance classification accuracy, we used threshold-free 

cluster-estimation procedure (Smith & Nichols, 2009) with default parameters from the 

CoSMoMVPA package (Oosterhof et al., 2016), using multiple comparison correction based on a 

sign-permutation test (with null distributions created from 10,000 bootstrapping iterations). To reveal 
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where decoding performance was significant, the threshold on the statistical maps was set at Z > 2.57 

(i.e., p < .005). The procedure was first applied within each category against the mean of 0.5 decoding 

accuracy and then used to check for significant differences in contrasting the two. 

 

 Results 

3.1 Behavioral results 

Reaction times analysis showed a main effect of category [F(1, 19) = 128.83, p < .001, 𝜂𝑝
2 = .87] with 

faster responses to non-social than to social categories. No other significant main effects were present. 

Significant first order interactions emerged between category and valence [F(1, 19) = 18.24, p < .001, 

𝜂𝑝
2 = .49], and between category and modality [F(1, 19) = 47.94, p < .001, 𝜂𝑝

2 = .72], with the former 

indicating how the difference in RTs between social groups and objects was significantly greater in 

the positive relative to the negative valence targets (p = .001), and in pictures relative to words (p < 

.001). Last, a post-hoc analysis of the significant second-order interaction between category, valence 

and modality [F(1, 19) = 8.37, p = .009, 𝜂𝑝
2 = .31], revealed that social groups were evaluated slower 

relative to objects in all valence and modality combinations (all ps < .001) but the negative word one, 

where there was no significant categorical difference (p = .60). (see Figure 3). 

 

Figure 3. Violin plots displaying single participant mean RT distribution and group mean RTs for Object and 

Social category targets divided by valence. Error bars represent ± 1 SE. 
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3.2 ERP results   

150 – 200 ms. The analysis of the P1 time window resulted in a significant three-way interaction 

between Valence, Category and Cluster [F(3.19, 60.53) = 3.28, p = .025, 𝜂𝑝
2 = .15], and a significant 

four-way interaction between Valence, Category, Modality and Cluster [F(2.61, 49.61) = 7.54, p < 

.001, 𝜂𝑝
2 = .28]. Follow-up analyses for the word modality evidenced a significant Valence effect in 

the right frontal cluster (p < .05), with a greater amplitude for negative as opposed to positive stimuli 

(p < .05). The effect was only significant for Social groups (p < .05), while the effect for and 

difference from Objects was not significant (both ps > .1). No effects were present for pictures in the 

same cluster. For pictures, a significant Valence effect was present for Objects in the occipital, left 

posterior and left anterior clusters (ps < .05), with no effect for Social groups (ps > .05), and a 

significant difference between categories (ps < .05). A Valence effect for both categories was present 

in the right posterior and the mid frontal clusters (ps < .05), presenting also a significant difference 

between categories (p < .05). This difference was characterized by a greater amplitude for negative 

vs positive stimuli for Objects and a greater amplitude for positive vs negative stimuli for Social 

groups. 

400 – 700 ms. A significant interaction was present between Valence, Category and Cluster 

[F(3.71, 70.49) = 3.27, p = .02, 𝜂𝑝
2 = .15]. At the single cluster level, a marginally significant Valence 

effect, with a greater amplitude for positive stimuli, was only present for words in the central right 

electrodes (p = .07). In the picture modality, the same cluster also presented a significant Valence 

effect for Objects (p < .05), where the difference with Social groups was marginally significant (p = 

.08). 

700 – 1000 ms. Significant interactions between Valence, Modality and Cluster [F(3.84, 72.98) 

= 2.54, p = .049, 𝜂𝑝
2 = .12], Valence, Category and Cluster [F(4.36, 82.75) = 2.62, p = .036, 𝜂𝑝

2 = .12], 

Valence, Category and Modality [F(1, 19) = 6.87, p = .017, 𝜂𝑝
2 = .27] were present in the latest time 

window. These were accompanied by a marginally significant four-way interaction involving 
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Valence, Category, Modality and Cluster [F(3.24, 61.57) = 2.51, p = .063, 𝜂𝑝
2 = .12]. Follow-up 

analyses showed a significant Valence effect in the right posterior cluster for words (p < .05) but not 

for pictures (p > .1). Within this cluster, the effect of Valence was significant for Social groups (p < 

.05) but not for Objects (p > .1), with the difference between the two categories also being significant 

(p < .05). A marginally significant Valence effect in the left central cluster for words only (p = .07), 

with a greater amplitude for negative stimuli, was driven by a significant effect for Social groups (p 

< .05), with no effect for Objects and no significant difference between categories (both ps > .1). In 

the right central cluster, the main effect of Valence (p < .05) was accompanied by two marginally 

significant effects in both categories (ps = .07), in all cases displaying a greater amplitude for positive 

relative to negative word stimuli. For pictures, only a marginally significant Valence effect emerged 

for Social groups in the left posterior region (p = .09). 

 

3.1 Cross-modal valence decoding in social groups and object categories 

Valence cross-decoding results for social groups evidenced a first significant decoder performance 

period at 100-150 ms, followed by a second interval going from ~450 to 1000 ms (see Figure 3A & 

3C). In the case of object categories, only one significant window was present between ~400 and 700 

ms (see Figure 3B & 3C). When contrasting decoder performance between categories, a significantly 

greater decoding performance was found for social groups in two time windows - an early window 

going from 50 to 150 ms and a late window starting at 750 ms up to 1000 ms (see Figure 3D). 

Time-generalisation results evidenced how decoding did not differ based on modality, as all 

significant regions laid on the diagonal (see Figures 4A & 4B). Additionally, a sustained pattern of 

neural activity across modalities was present for social groups in the ~450-1000 ms time window 

(King & Dehaene, 2014), as evidenced by the square-shaped region of significance (see Figure 4A). 

This pattern was unique to social groups and was not present for objects (see Figure 4B). 
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Figure 4. A) Time-generalization plots resulting from cross-decoding valence of social category and object 

category targets (B). Black contours represent above chance decoding accuracy (p < .001). C) Classification 

accuracy across the time-generalization diagonal for social and object category targets, and (D) their 

difference. Asterisks indicate above chance decoding accuracy time intervals (p < .001). 

 

 Discussion 

With the present study we aimed at identifying the distinctive patterns of brain activity associated 

with the affective processing of social groups and compare it to the one of nonsocial categories. 

Following previous neuropsychological studies (Piretti et al., 2015; Rumiati et al., 2014; Suran, 

Rumiati, et al., 2019) and theoretical propositions suggesting a greater relevance of affective features 

C D 

A B 
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in representing social categories (Lambon Ralph et al., 2016; Mahon & Caramazza, 2011; Simmons 

& Barsalou, 2003), and following studies showing both common and distinct anatomical bases for 

processing social and non-social affective information (Norris et al., 2004), we expected to find 

categorical differences in the temporal dynamics of affective processing, prioritizing the decoding of 

valence in social groups compared to nonsocial categories. To rule out possible confounds generated 

by the input modality and thus isolate affective evaluation, we cross-decoded the effects between two 

different input-modalities (words and images) using MVPA by training of classifiers using neural 

data associated with one modality (e.g. words) and test on data from the other modality (pictures). 

Additionally, we applied time generalization to study the evolution of the affect-specific neural code 

while locating its processing in the temporal dimension of the two input modalities. Our results 

showed significant differences in decoding affective features between social and nonsocial category 

targets. This difference was present in both early and later time windows, and was also reflected in 

overall response times as longer responses to social groups, but just when participants were required 

to make affective judgments. 

Significant decoding performance appeared first at 100 ms post-stimulus that was unique to 

social categories. This earlier decoding might indicate the prioritization of affective processing for 

Social groups over Objects. This effect might also be linked to the early effects found by previous 

ERP studies using words (Zhang et al., 2014) and pictures (Zhu et al., 2015) which, although here not 

detected across modalities by univariate analyses, was captured by the greater sensitivity and earlier 

detection attributed to MVPA (Grootswagers et al., 2017). In the second time window of significant 

decoding, above-chance accuracy started approximately at ~400 ms for nonsocial categories and at 

~450 ms for social groups, reflecting the delay found in the behavioral response. This time interval 

overlaps with the emergence of the late positive components modulated by the affective content of 

both words and pictures (Zhang et al., 2014; Zhu et al., 2015), and it represents the only time interval 

in which a significant difference between negative and positive stimuli was present across modalities 
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in the same scalp region when analysing ERPs. While for Objects significant decoding in the second 

time window lasted until ~700 ms, significant affective decoding in Social groups extended to 1000 

ms post-stimulus and was significantly greater than the one for Object categories from ~750 ms on. 

In previous ERP research, effects occurring in this time window are associated with a greater 

sustained processing of emotional stimuli (Citron, 2012) and an enhanced motivational significance 

(Liu, Huang, McGinnis-Deweese, Keil, & Ding, 2012; Schupp et al., 2000; Tempel et al., 2013), 

which might be intrinsically greater in social groups due to the presence of conspecifics. Although 

more valence effects were identified with the univariate analysis for Social groups relative to Objects, 

none of these were captured across modalities and in the same regions. The claim of a more sustained 

processing of Social groups is also supported by the results of the time generalization, presenting a 

square-shaped pattern of significance, indeed associated with sustained patterns of brain activity in 

the decoded dimension (King & Dehaene, 2014). 

Reaction times to social groups evidenced a slower evaluative response in comparison to 

nonsocial categories. The lack of such differences in ambivalence and categorization times of the 

same targets allows us to exclude the possibility that the disparity was due to social group stimuli 

presenting stronger conflicting (i.e., nondominant) affective associations (Cunningham, Johnson, 

Gatenby, Gore, & Banaji, 2003; Cunningham et al., 2004), or having a delayed semantic access, 

respectively. As suggested by previous neuroimaging studies evidencing slower responses in 

categorizing phrases describing social interactions versus nonsocial actions (Wood, Romero, Makale, 

& Grafman, 2003), we speculate that it is possible that participants activated more complex 

representations for social relative to nonsocial categories to make affective decisions. Evaluative 

processes generally involve a more complex selection of information in comparison to categorization 

(Cunningham et al., 2003), thus task demands might interact with the sociality of the semantic 

categories of target stimuli. For example, the present data might reflect how the evaluation of social 

groups requires accessing all relevant representations of the behaviors commonly associated with 
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them, while in the case of nonsocial categories, just the representation of their common usage may 

have sufficed. 

 In conclusion, our results suggest that processing of affective features comes with distinct 

temporal dynamics for social groups and nonsocial categories, and represent further evidence of the 

interaction between semantic and affective information in the temporal domain. An early decoding 

of affective features for social groups however was not associated with faster responses, as the 

behavioural findings have shown that subjects took longer in providing a behavioural response when 

evaluating social groups as opposed to objects. Interestingly, this effect seems to be independent from 

the timing of access to the more basic person/object categorical representations. It is indeed possible 

that a slower evaluative response to social groups was triggered by self-presentation concerns when 

required to provide judgments about other people following access to the categorical semantic 

information (Nosek, 2005), and thus requiring additional affective processing stages as opposed to 

objects. The same sustained processing of affective information of social groups was also evidenced 

at a neural level, with longer lasting classifier decoding accuracy in a late time window, going beyond 

the behavioural response. We suggest that the delayed response and longer decoding of affective 

features in social groups, possibly associated with more sustained post-semantic attentional processes 

due to more complex representations, supports the hypothesis of a greater relevance of their affective 

features compared to nonsocial categories (Rumiati et al., 2014). As our conclusions are derived from 

a setting explicitly requiring subjects to focus only on affective content, it is possible that its increased 

weight was specific to the present task demands. By directly comparing the neural signatures resulting 

from different tasks, future studies may focus on elucidating which aspects of affective feature 

processing in social groups interact with experimental demands and which ones occur independently 

from it, being thus more intrinsic to their processing. 
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APPENDIX 

Target word stimuli [English translation] 

 

 

 

 

Social groups Objects 

Negative Positive Negative Positive 

alcolisti [alcoholics] bambini [children] bare [coffins] anelli [rings] 

barboni [homeless] anziani [elderly] coltelli [knives] biciclette [bicycles] 

detenuti [convicts] suore [nuns] droghe [drugs] chitarre [guitars] 

drogati [junkies] camerieri [waiters] fucili [rifles] cuscini [pillows] 

migrant [migrants] marina [sailors] granate [grenades] libri [books] 

militari [military] ballerina [dancers] manette [handcuffs] matite [pencils] 

obesi [obese] bagnini [lifeguards] pistole [guns] orology [watches] 

prostitute [prostitutes] pompieri [firefighters] sigarette [cigarettes] palloni [balloons] 

terroristi [terrorists] scultori [sculptors] siringhe [syringes] perle [pearls] 

zingari [gypsies] pittori [painters] stampelle [crutches] violini [violins] 


